Our lab has developed a microfluidics-assisted technique, the Cellular Capsule Technology (CCT) that enables to encapsulate cells and grow organoids or tumor models within a shell of porous hydrogel.
The CCT is based on a co-extrusion micro-device fabricated with a 3D printer. The working principle consists in injecting an alginate solution and the cell suspension in concentric capillaries to generate a composite liquid jet. Exploiting the Rayleigh-Plateau instability that fragments the jet into microdroplets, we produce spherical capsules upon alginate crosslinking in a calcium bath. Inhibiting the Rayleigh-Plateau instability leads to the formation of tubular capsules.
Quantitative imaging of the growth of the organoids using state-of-the art optical sectioning microscopy and analyzing the cellular fate using custom optofluidic devices allow us to investigate both fundamental mechanotransduction issues in stem cell biology and self-organization processes involved in tissue engineering, and to explore biomedical applications, in particular in oncology and neurodegenerative diseases.
Part of our work is now transferred to industry through the creation of a start-up by two post-doctoral fellows.
The BiOf lab has developed the Cellular Capsule Technology, which enables the alginate-encapsulation of multicellular spheroids. Our optofluidic devices allow producing efficiently stem cell spheroids, tissue cysts (cystic 3D cell cultures), and various 3D tumor models, including liquid tumor organoids. The experience of our academic research team, based in Bordeaux, France, in self-assembled 3D cell culture and tissue engineering has led us to explore cell mechanics and cellular mechanotransduction, design novel 3D cell-based assays using fluorescence light-sheet microscopy and investigate novel therapeutic strategies, such as the use of dopaminergic neuronal organoids as a new parkinson’s disease cell therapy.